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Abstract

Inverse problems arise in many fields such as economics, neuroscience, and

engineering. In this dissertation we investigate several inverse problems.

In the first chapter of the dissertation, we address the problem of estimating

transport surplus (a.k.a. matching affinity) in high dimensional optimal transport

problems. Classical optimal transport theory specifies the matching affinity and de-

termines the optimal joint distribution. In contrast, we study the inverse problem

of estimating matching affinity based on the observation of the joint distribution,

using an entropic regularization of the problem.

In the second chapter of the dissertation, we review gravity equations for bilat-

eral trades and the corresponding Pseudo-Maximum-Likelihood (PML) estimation

technique. We then establish the connections between PML and optimal transport.

In the third chapter of the dissertation, we consider the class of binary inverse

problems, in which an observed signal is formed as a superposition of a subset of

template signals drawn from a dictionary, and corrupted by additive noise. We

assume a Bernoulli prior for the binary coefficients specifying the subset, with

known mean taking any value between zero and one. We formulate a maximum a

posteriori solution and provide an iterative algorithm for approximating it.
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Chapter 1

Estimating matching affinity

matrix under low-rank constraints

In this chapter, we address the problem of estimating transport surplus (a.k.a.

matching affinity) in high dimensional optimal transport problems. Classical op-

timal transport theory specifies the matching affinity and determines the optimal

joint distribution. In contrast, we study the inverse problem of estimating match-

ing affinity based on the observation of the joint distribution, using an entropic

regularization of the problem. To accommodate high dimensionality of the data,

we propose a novel method that incorporates a nuclear norm regularization which

effectively enforces a rank constraint on the affinity matrix. The low-rank matrix

estimated in this way reveals the main factors which are relevant for matching.
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1.1 Introduction

Optimal transport theory has attracted a lot of interest across a number of

scientific disciplines, from pure mathematics [33] to various applications including

machine learning [4] mathematical statistics [10] and economics [16]. The ba-

sic problem of optimal transport is how to form pairs of agents drawn from two

populations in order to maximize the total utility, also called matching affinity.

The resulting joint distribution of pairs is called an optimal matching, also called

optimal transport plan.

Most of the theory of optimal transport has focused on the direct problem,

namely solving for the optimal matching, taking the matching affinities as given.

In contrast, we consider in this chapter the inverse optimal transport problem:

given the observation of an optimal matching, what is the affinity function for

which this matching is optimal1? This problem arises naturally in the study of

two-sided matching markets, which appears in various fields of the social sciences.

In sociology and economics, one instance of these markets is the “marriage market,”

following Becker [3]’s seminal analysis, where one observes the characteristics of

both partners in married couples (such as education, height, personality traits,

etc.), and one wants to infer (i) which characteristics attract or repel each other

the most, and (ii) what combinations of characteristics are the most relevant for

matching.

In models of matching markets, vectors of characteristics x ∈ Rd for one side

of the market and y ∈ Rd′ for the the other side are available, and the joint

distribution π̂ (x, y) across matched pairs is observed, and we are interested in

1 In the theoretical computer science literature, this problem is known as an inverse assignment
problem, see [5], Section 6.7 and references therein.

2
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estimating the matching affinity function Φ (x, y). Broadly speaking, models of

matching markets are divided into three categories: scalar index models, discrete

models, and multivariate models, which we will now briefly survey.

Scalar index models. A number of papers use scalar index models: they assume

that agents match on a pair of scalar indices x̃ = u>x and ỹ = v>y, which are

weighted sums of partners’ characteristics. Following a suggestion by [3], a number

of papers have used canonical correlation or linear regression techniques in order

to estimate the weight vectors u and v; see for instance [19, 20], and a caution

against the misuse of these techniques in [17]. A more robust ways to estimate the

weight vectors has been suggested by [28] using rank correlation. See also [8].

Discrete models. Following a seminal paper by [9], a number of recent papers

[15, 8, 18] have assumed that agents match based on discrete characteristics, either

categorical variables like ethnicity, or binned, such as the income bracket. However,

the binning of cardinal variables may be problematic as the results may depend

heavily on the arbitrary choice of the thresholds. Therefore, these models suffer

from limitations when dealing with non-categorical variables.

Continuous models. More recently, a continuous model has been proposed by

[12], where the matching affinity is bilinear with respect to the matched pairs’

characteristics, i.e. is given by x>Ay, where A, called the affinity matrix is a d×d′

matrix is to be estimated. This model enables weighted interactions between any

pair of characteristics. Of course, when the rank of A is one, A = λuv>, and

one recovers the scalar index models discussed above. But as soon as the rank of

A is greater than one, a pair of scalar indices on each side of the market would

not be sufficient to describe the matching affinity. The authors of [12] propose a

moment matching procedure to estimate A, which can be computed via convex

3
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optimization. However, as soon as the number of characteristics goes large, the

number of parameters to be estimated grows quadratically, potentially leading to

an overfit.

In this chapter, we propose a novel method for solving the inverse optimal

transport problem in a high-dimensional setting, where we estimate the affinity

matrix A under a rank constraint in order to capture the relevant dimensions of

interaction on which matching occurs. An application to the marriage market is

proposed, which uses the same data as in [12] and illustrates how our method allows

one to identify the impact of narrowly defined personality traits without having to

aggregate these into aggregate traits prior to the estimation of the affinity matrix

as in that paper.

The rest of the chapter is organized as follows. Section 1.2 presents the match-

ing equilibrium model and introduces the concept of affinity matrix. Section 1.3

though 1.6 describe the maximum likelihood estimation of the affinity matrix, in-

cluding a low-rank regularized version. Section 1.7 presents the application to the

Dutch marriage markets dataset. Section 1.8 concludes the chapter.

1.2 The model

We first briefly recall the optimal transport problem; see [33, 34] for more.

Given two probability distributions µ1 and µ2 over Rd×Rd′ , the optimal transport

problem is defined as

max
π∈Π(µ1,µ2)

Eπ [Φ (X, Y )] (1.1)

where Φ (x, y) is the measure of affinity between two agents x ∈ Rd and y ∈ Rd′

on each side of the market, and Π (µ1, µ2) is the set of distributions π (x, y) with

4
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marginal distributions µ1 and µ2. Problem (1.1) is the Monge-Kantorovich problem

of optimal transport.

1.2.1 Optimal solution vs equilibrium

The optimization problem (1.1) yields a centralized solution where a central

planner would decide which pairs to form. However, most matching markets (in-

cluding the marriage market which we study in this chapter) are decentralized

markets, in which agents decide based on their own interest, leading to an equi-

librium. It follows from the work of [3] and [26] that the centralized and the

decentralized problems are equivalent. We sketch the argument as follows.

In decentralized problems, an outcome is the specification of a matching π ∈

Π (µ1, µ2), and of individual payoffs u (x) and v (y), which are attained by agents

of respective types x and y. The outcome is called stable when

u (x) + v (y) ≥ Φ (x, y) ∀x, y. (1.2)

Stability is a required condition for equilibrium. Indeed, if (1.2) were not to

hold, then ε = Φ (x, y) − u (x) − v (y) would be strictly positive, and thus by

matching together, x and y could attain u (x) + ε/2 and v (y) + ε/2, which is

strictly more than their equilibrium payoffs u (x) and v (y). At the same time

if x and y are matched at equilibrium under πeq, then feasibility imposes that

u (x) + v (y) = Φ (x, y). Thus, taking expectations of both sides with respect to

πeq will get

Eπeq [Φ (X, Y )] = Eπeq [u (X) + v (Y )] = Eµ1 [u (X)] + Eµ2 [v (Y )] . (1.3)

5
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Hence, πeq ∈ Π (µ1, µ2) is defined as an equilibrium matching whenever there

exists functions u and v such that both conditions (1.2) and (1.3) hold.

Let us now show that if πeq is an equilibrium, then it is a solution of (1.1).

Consider πopt a solution of problem (1.1). Taking expectations of both sides of (1.2)

with respect to πopt gets

Eπopt [Φ (X, Y )] ≤ Eπopt [u (X) + v (Y )] = Eµ1 [u (X)] + Eµ2 [v (Y )] ,

where the latter equality comes from the fact that πopt ∈ Π (µ1, µ2). Hence,

Eπopt [Φ (X, Y )] ≤ Eπeq [Φ (X, Y )], but by definition of πopt, these two quantities co-

incide and πeq is optimal for the centralized problem (1.1). Hence, the decentralized

solution (equilibrium matching) coincides with the centralized solution (optimal

matching).

However, the analysis above assumes that the existence of a matching between

two partners is purely deterministic given partners’ observed characteristics, which

is not realistic. In order to allow for some randomness arising from agent’s unob-

served heterogeneity in the matching process, we shall make use of a regularized

version of the optimization formulation (1.1) in order to perform the estimation of

Φ.

1.3 Modeling heterogeneity

It is a well-known result in optimal transport theory (see [34], Chapter 9) that,

under suitable assumptions on Φ, the optimal matching will be pure, in the sense

that any x is matched deterministically to a unique y = T (x) for some bijective

map T ; in other words, the conditional distribution π (y|x) of y given x, is reduced

6
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to a single point mass. Clearly, in the presence of unobserved heterogeneity, this

is no longer the case. Our approach to modeling uncertainty consists in adding an

entropic regularization term in (1.1), leading to

max
π∈Π(µ1,µ2)

Eπ [Φ (X, Y )− σ ln π (X, Y )] (1.4)

where σ > 0 is a temperature parameter, so that setting σ = 0 recovers pro-

gram (1.1).

Recently a number of authors have studied such a regularized version of the

Monge-Kantorovich problem (see for instance [4]; [18] and references therein). One

notable feature of (1.4) is that the optimal matching π (x, y) has form

π (x, y) = a (x) b (y) exp (Φ (x, y) /σ) ,

where a (x) and b (y) are set by imposing the constraint π ∈ Π (µ1, µ2), that is


∫
a (x) b (y) exp (Φ (x, y) /σ) dy = µ1 (x)∫
a (x) b (y) exp (Φ (x, y) /σ) dx = µ2 (y)

.

As a result, a (x) and b (y) can be obtained by the iterated proportional fitting

procedure (IPFP), a.k.a. Sinkhorn’s algorithm, which is presented in algorithm 1.

Algorithm 1 IPFP

Input: b(y), µ1(x), µ2(y),Φ(x, y), σ
while not converged do

a (x)← µ1 (x) /
∫
b (y) exp (Φ (x, y) /σ) dy

b (y)← µ2 (y) /
∫
a (x) exp (Φ (x, y) /σ) dx

end while
Return: a(x), b(y)

7
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1.4 Parameterization of the affinity function

We assume the simple parameterization of Φ as a bilinear form associated to

some affinity matrix A, namely

ΦA (x, y) = x>Ay. (1.5)

This functional form will capture the interaction effects between the various

dimensions of the characteristics. The sign of Aij indicates that there is attractive

(if positive Aij > 0) or repulsive (if Aij < 0) energy between coordinate i of x and

coordinate j of y. On the contrary, Aij = 0 means that there is no interaction

between xi and yj.

By positive homogeneity, we can normalize the temperature parameter σ in

front of the entropic term to σ = 1. Indeed, the solution of the problem with

affinity function Φ and temperature σ coincides with the solution of the problem

with affinity function Φ/σ and temperature one. Hence, we define

W (A) = max
π∈Π(µ1,µ2)

Eπ [ΦA (X, Y )− lnπ (X, Y )] . (1.6)

As before, the optimal matching πA retains the form

πA (x, y) = a (x) b (y) exp (ΦA (x, y)) , (1.7)

where a (x) and b (y) are computed by the IPFP algorithm 1. It follows directly

8
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from expression (1.7) that

∂2 lnπA (x, y)

∂xi∂yj
= Aij,

which provides a nice interpretation of A as the matrix of cross-derivatives of

the log-likelihood of a matched (x, y) pair. In the sequel, we shall focus on the

estimation of the affinity matrix A.

1.5 Maximum likelihood estimation of the affin-

ity matrix

We would like to estimate A based on an i.i.d. sample of matched pairs(
x(k), y(k)

)
, k = 1, ..., N , where x(k) and y(k) are respectively d and d′-dimensional

vectors of characteristics, and the observed matching is defined as

π̂ (x, y) =
1

N

N∑
k=1

δ
(
x− x(k)

)
δ
(
y − y(k)

)
.

1.5.1 Unconstrained maximum likelihood

As implied by the next result, the likelihood function turns out to have a

particularly tractable form and is globally concave.

Proposition 1. (a) The log-likelihood l (A; π̂) of observation π̂ at parameter value

A is given by

l (A; π̂) = NEπ̂
[
log πA (X, Y )

]
= N (Eπ̂ [ΦA (X, Y )]−W (A)) . (1.8)

9
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(b) It is a concave function of A, and its gradient is given by

∇l (A; π̂) = N (Eπ̂ [XiYj]− EπA [XiYj]) . (1.9)

Proof. (a) The log-likelihood of a pair
(
x(k), y(k)

)
is given by log πA

(
x(k), y(k)

)
. As

the pairs are independently sampled, the log-likelihood of the matching π̂ is given

by l (A; π̂) =
∑N

k=1 log πA
(
x(k), y(k)

)
= NEπ̂

[
log πA (X, Y )

]
. It follows from (1.7)

that Eπ̂
[
log πA (X, Y )

]
= Eπ̂ [ΦA (X, Y )]+Eπ̂ [log a (X) + log b (Y )], but as πA and

π̂ both belong to Π (µ1, µ2), it follows that

Eπ̂
[
log πA (X, Y )

]
= Eπ̂ [ΦA (X, Y )]− EπA [ΦA (X, Y )] + EπA [ΦA (X, Y )] +

EπA [log a (X) + log b (Y )]

= Eπ̂ [ΦA (X, Y )]− EπA [ΦA (X, Y )] + EπA

[
log πA (X, Y )

]
= Eπ̂ [ΦA (X, Y )]−W (A) ,

hence l (A; π̂) = N {Eπ̂ [ΦA (X, Y )]−W (A)}.

(b) Eπ̂ [ΦA (X, Y )] is linear in A, andW (A) is convex in A, so l (A; π̂) is concave.

By the envelope theorem, ∇l (A; π̂) = N {Eπ̂ [XiYj]− EπA [XiYj]}.

Thus, conditions (1.9) imply that the maximum likelihood estimator Â should

solve

EπA [XiYj] = Eπ̂ [XiYj] (1.10)

for every pair i ∈ {1, · · · , d} and j ∈ {1, · · · , d′}, which thus turns out to be

equivalent to the moment matching procedure of Dupuy and Galichon (2014).

10
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Hence, assuming w.l.o.g. that X and Y are centered at 0, this implies that Â is

the value of the parameter such that the predicted covariance matrix covπA (X, Y )

will match the observed one covπ̂ (X, Y ).

One important advantage of the concavity of the log-likelihood function l (A; π̂)

is that various additional regularizations can be incorporated into the estimation

procedure. One could constrain A to be entry-wise nonnegative so that only at-

tractive interactions are considered. One could also assume A is sparse, so that

only a small number of pairs of characteristics interact. In this chapter, we are

concerned with the case when only a small number of coordinates, which are lin-

ear combinations of the characteristics, interact. One shall then need to impose

a requirement that the rank of A is small. The next sections propose an effective

method for doing so which is implemented on two marriage market datasets.

1.6 Low-rank regularization

In some situations, two scalar dimensions x̃ and ỹ, obtained linearly from x

and y via x̃ = u>x and ỹ = v>y, suffice to explain the solution π̂, where u and v

are two unit vectors of weights. In this case, A is simply a scalar multiple of rank

one matrix uv>. More generally, when the rank of A is equal to r, the singular

value decomposition (SVD) of A yields

A = USV >, (1.11)

where S is a diagonal r × r matrix with strictly positive diagonal entries (called

singular values) in the decreasing order, and U and V are two semi-orthogonal

d × r matrices. In this case, the total interaction term is x>Ay = x̃>Sỹ, where

11
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x̃ = U>x and ỹ = V >y are the relevant dimensions of interaction. Note that

x>Ay requires to sum over d × d′ interaction terms whereas x̃>Sỹ only requires

to sum over r ≤ min {d, d′} interaction terms. Moreover, each singular value can

be interpreted as the weight of the interaction between the corresponding relevant

dimensions of x̃ and ỹ in the total interaction term.

One can incorporate the rank constraint into the maximization of the likelihood,

whose expression is given in proposition 1, yielding

max
A

l (A; π̂)

s.t. rk (A) ≤ r.

However, the general rank-constrained problem is non-convex and NP-hard, see

[14]. A natural convex relaxation of the problem is done by replacing the rank of

A by its nuclear norm (see e.g. [14, 25]), ‖A‖∗, defined as the sum of the singular

values of A. This yields a modified formulation of the problem as

min
A
{W (A)− Eπ̂ [ΦA (X, Y )] + λ ‖A‖∗} , (1.12)

where λ ≥ 0 is the Lagrange multiplier of the nuclear norm constraint. Measuring

the complexity of the model by the rank of the affinity matrix, equation (1.12)

indicates that for λ = 0, one accepts the full complexity of the model and performs

exact likelihood maximization whereas, for large values of λ, one simplifies the

model and deviates from exact likelihood maximization. Hence, the parameter λ

can be thought of as a parameter controlling the trade-off between exact likelihood

maximization and the complexity of the model.

The computation for problems involving the nuclear norm can be efficiently

12



www.manaraa.com

carried out using the proximal gradient descent method with guaranteed conver-

gence (see e.g. [31]). As noted in the previous section, l (A; π̂) is continuously

differentiable with respect to A, and its gradient is given in expression (1.9). We

now describe our complete procedure in algorithm 2.

Algorithm 2 Proximal gradient descent algorithm for problem (1.12)

Input: A, step size t, matched pairs
(
x(k), y(k)

)
, k = 1, ..., N

while not converged do
Using the IPFP algorithm 1 to compute the optimal matching πA

A← A− t
(∑N

i,j=1(πAij − π̂ij)x(i)(y(j))>
)

[U, diag(s1, · · · , sd), V ] = SVD(A)
A← Udiag((s1 − tλ)+, · · · , (sd − tλ)+)V >

end while
Return: A

Additionally, we note that the nuclear norm regularization prevents overfitting

the covariance mismatch ‖EπA

[
XY >

]
−Eπ̂

[
XY >

]
‖F , where ‖·‖F is the Frobenius

norm of a matrix and which one recalls from expression (1.10) will be exactly equal

to 0 without the nuclear norm regularization. Indeed, given U and V defined in

expression (1.11), the first order optimality conditions [36] are

EπA

[
XY >

]
− Eπ̂

[
XY >

]
+ λUV > +N = 0, (1.13)

where N satisfies U>N = 0, NV = 0, and ‖N‖2 ≤ λ, with ‖N‖2 being the spectral

norm of N . Equation (1.13) indicates that EπA

[
XY >

]
− Eπ̂

[
XY >

]
and A have

simultaneous SVDs. Moreover, the singular values of EπA

[
XY >

]
− Eπ̂

[
XY >

]
corresponding to the strictly positive singular values of A will be exactly equal to

λ, while the ones corresponding to the zero singular values of A will be less than or

equal to λ. Thus, by varying λ, the covariance mismatch, which equals the l2-norm

of the singular values of EπA

[
XY >

]
− Eπ̂

[
XY >

]
, will change as well.

13
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We select the best λ by repeating a five-fold cross-validation (CV) twice, re-

sulting in ten different experiments. In each of the CV procedure, the whole

dataset is randomly split into five parts with equal size. For each λ, we esti-

mate A via (1.12) using 4 parts and record both W (A) − Eπ̂ [ΦA (X, Y )] and

‖EπA

[
XY >

]
− Eπ̂

[
XY >

]
‖F evaluated on the remaining part. From this we ob-

tain an estimated prediction error curve as a function of λ, and we select the λ

value that minimizes both errors.

1.7 Application to marriage market data

We apply the low-rank optimal transport method to the case of bipartite match-

ing in the marriage market. We revisit the data set used in [12]. This data confronts

the analyst with the problem of selecting from a large set of observed characteristics

of spouses, those that are important for matching affinities.

In this application, the analyst faces the difficult task of estimating an affinity

matrix whose size is large, being the product of the number of observed characteris-

tics of spouses, relative to the number of observations. The high ratio of parameters

to observations creates overfitting concerns. A solution would be to construct com-

binations of the observed characteristics prior to the estimation, hence reducing

the number of parameters of the associated affinity matrix. However, the construc-

tion of these combinations of characteristics requires the analyst to define weights

based on prior information about matching affinity. In contrast, our low-rank op-

timal transport method allows the analyst to simultaneously estimate the affinity

matrix while selecting the relevant combinations of characteristics using weights

derived from the information contained in the affinity matrix itself.
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1.7.1 Personality traits

We use the Dutch Household Survey (DHS) ran by the Dutch National Bank.

In particular, a representative sample of 1,155 young couples observed in the period

1993-2002 in the Netherlands was constructed following the procedure outlined in

[12]. In this sample, the analyst has access to detailed information about spouses’

characteristics such as education, height, Body Mass Index (BMI)2 and subjective

health, but also about personality traits and attitude towards risk. Personality

traits are herewith recovered by administrating the 16 Personality Factors test

(16PF test) to respondents. This test consists in a 16-item questionnaire where

each item corresponds to a primary factor describing a facet of one’s personality.

Attitude towards risk is recovered using a similar approach (see e.g. [11]). A 6-

item questionnaire about risk attitude is administrated to the respondents, each

item corresponding to a primary factor describing a facet of one’s attitude towards

risks.

In this application, the objective is to estimate matching affinities from the

sample of 1,155 couples with characteristics (X, Y ), where X and Y contain each

26 variables: education, height, BMI, subjective health and the 16 primary fac-

tors of personality traits and 6 primary factors of risk attitude. The associated

affinity matrix has 26 × 26 = 676 parameters to be estimated, hence a ratio of

0.58 parameters per observation. In [12], the authors substantially reduced the

dimensionality of the model by constructing 5 global factors of personality traits

and 1 global factor of attitude towards risk. They relied on the psychology litera-

ture that shows that 5 global factors, often referred to as the “big 5,” providing an

overview of one’s personality can be derived from the primary factors of the 16PF

2Weight in Kg divided by the square of height in meters.
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using methods such as Factor Analysis. These 5 global factors are (orthogonal)

linear combinations of the 16 primary factors. Similarly, as is standard in the

economic literature (see e.g. [11]), a single global factor providing an overview of

attitude towards risk can be derived as a linear combination of the underlying 6

primary factors. As a result, the authors in [12] were able to estimate a reduced

affinity matrix of dimension 10 × 10 = 100, with a ratio of 0.09 parameters per

observation. However, this requires to assume that i) either all or none of the pri-

mary factors belonging to a global factor matter and ii) their relative importance

is proportional to their relative weight in the global factor. There are no reasons

to expect this should hold universally since the weights used to create the global

factors are chosen so as to provide an overview of an individual’s personality or

attitude towards risk and not to capture matching affinities. In contrast, our low-

rank optimal transport approach, allows us to estimate the affinity matrix of size

676 associated with the primary factors while creating the relevant combinations

of these factors that matter for matching affinities.

We use the low-rank optimal transport approach to estimate the affinity matrix

A when considering characteristics including the primary factors. Inspection of

Figure 1.1 indicates that λ = 0.15 gives slightly lower values of the CV errors of

both W (A)−Eπ̂ [ΦA (X, Y )] and ‖EπA

[
XY >

]
−Eπ̂

[
XY >

]
‖F than λ = 0.1 does.

Since λ = 0.15 achieves this result with a lower rank of A, we use this value as

the coefficient for the nuclear norm regularization. The left panel of Figure 1.2

reveals the rank of the affinity matrix is 12 hence indicating that only 12 relevant

dimensions matter for matching affinities. Of those 12 relevant dimensions, the

first three alone explain about 50% of the total matching affinity as indicated in

the right panel of Figure 1.2.
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Figure 1.2: (Left) singular values (right) cumulative shares.

17



www.manaraa.com

The loadings of the first three dimensions, reported in Table 1.1, reveal several

important results. First, as in [12], we do find that the first relevant dimension

loads principally on education, i.e. 0.85 for men and 0.83 for women respectively,

whereas the second and third dimensions load principally on personality traits and

attitude towards risk. However, using the primary factors rather than the global

factors as in [12], we find that although conscientiousness matters for both men and

women, the underlying primary factors at play differ across gender. For women,

the primary factor “easily hurt, offended,” belonging to the global factor consci-

entiousness, is the most important characteristic in the second dimension with a

loading of 0.71. For men, the primary factor “easily hurt, offended” plays also an

important role (loading of magnitude 0.42), but the primary factor “disciplined,”

also belonging to the global factor conscientiousness, is the most important one

with a loading of 0.52. These results clearly illustrates that although conscientious-

ness matters, not all of its primary constituents do and different aspects matter

differently for men and women.

A similar type of results holds for the third dimension, which loads on some

but not all of the items measuring attitude towards risk. However, this dimension

also loads on other variables such as height, BMI and subjective health, making

its interpretation more difficult.

1.8 Conclusion and future research

In this chapter, we have demonstrated the effectiveness of rank-constrained

estimation techniques when solving inverse optimal transport problems. Inverse

optimal transport problems are often faced with large dimensionality of the data
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Singular value

Singular vector
Oriented toward people

Quick thinker
Not easily worried

Stubborn, persistent
Vivid, vivacious

Meticulous
Dominant

Easily hurt, offended
Suspicious
Dreamer

Diplomatic, tactful
Doubts about myself

Open to changes
Independent, self-reliant

Disciplined
Irritable, quick tempered

Ready to take risk for high possible returns
Investments in shares are too risky

Ready to borrow money for risky investment
Want to be certain my investments are safe

Should take greater financial risks
Ready to risk losing money to gain money

Educational level
Height
BMI

Subjective health

s1 = 0.39

U1 V1

-0.07 -0.04
0.08 -0.01
-0.10 0.00
0.06 0.03
0.00 0.02
-0.12 -0.05
0.05 0.06
-0.06 -0.03
0.08 0.01
-0.04 0.02
-0.06 0.07
0.06 0.13
0.10 0.03
-0.10 -0.11
0.01 0.01
0.00 -0.16
0.17 0.24
-0.31 -0.29
0.12 0.13
0.01 0.05
-0.06 -0.07
0.10 0.09
0.85 0.83
0.06 0.08
-0.20 -0.24
-0.01 0.01

s2 = 0.32

U2 V2

-0.08 0.19
0.25 -0.12
0.29 0.11
0.11 0.14
0.04 0.19
-0.01 0.04
-0.09 -0.21
0.42 0.71
0.16 0.14
-0.08 0.23
0.07 -0.10
-0.31 -0.35
0.12 0.04
0.31 0.04
0.52 0.17
0.08 -0.17
-0.02 -0.07
0.05 -0.07
-0.16 -0.03
-0.12 0.02
-0.03 -0.05
0.06 -0.02
0.12 0.12
0.12 0.01
0.17 0.18
-0.15 -0.06

s3 = 0.24

U3 V3

0.04 -0.08
-0.04 0.05
0.08 -0.07
-0.11 0.02
-0.23 0.11
0.16 0.17
0.00 0.08
0.02 -0.02
0.11 0.04
0.00 0.04
0.00 -0.03
0.17 0.09
-0.22 0.05
0.01 -0.09
0.01 -0.11
-0.02 -0.03
0.27 0.29
0.48 0.53
-0.17 -0.08
0.42 0.24
-0.11 -0.18
-0.38 -0.48
0.27 0.21
-0.12 -0.25
0.16 0.29
-0.21 -0.17

Table 1.1: Loadings of the top three relevant dimensions of matching affinities,
Dutch couples.
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sets; hence it is crucial to develop dimensionality reduction techniques. We plan to

investigate further applications of this methodology, including explaining the in-

tensity of mercantile exchanges between countries by the similarities in their char-

acteristics, predicting stable matches in online dating platforms, or understanding

the determinants of workers’ productivity on the labor market. We also plan to

consider an extension of the present methodology to nonbipartite networks, which

will allow to estimate the transport costs in minimum cost flow problems, with

applications to analyzing urban transportation demand, as well as link formation

in social networks.
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Chapter 2

Optimal transport methods for

gravity equations

In the previous chapter we formulate inverse optimal transport problems, in

which we are given the observation of an optimal matching and seek the affin-

ity function for which this matching is optimal. The application to the marriage

market is then investigated. In this chapter, we discuss the application of opti-

mal transport tools to another important set of inverse problems, the estimation

of gravity models in bilateral trade, where given observed trade flows, we want

to identify the most important factors that drive such activities. We introduce

a common formulation of the gravity model for bilateral trade and discuss two

most widely used estimation techniques in the literature, Ordinary Least Squares

(OLS) and Pseudo Poisson Maximum Likelihood (PPML). The most innovative

part of this chapter is the theoretical establishment of the connections between

optimal transport methods and PPML by showing their equivalence in estimating

the gravity model. Such equivalence will enable us to take advantage of the recent
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advances in computational optimal transport to solve large-scale bilateral trade

problems.

2.1 Introduction

Newton’s gravity equation in Physics is known as

Fij = G
MiMj

D2
ij

,

where Fij is the gravitational force between objects i and j, G is the gravitational

constant, Mi and Mj are object i’s and j’s masses respectively, and Dij is the

distance between them. Therefore, the force of gravity between two objects i and

j are positively related to M and negatively related to D. The pioneering work

of [30] initiated a vast theoretical and empirical literature on the gravity equation

for trade. Theories based on different foundations for trade all predict a gravity

relationship for trade flows analogous to Newton’s law of universal gravitation. In

its simplest form, the gravity equation for trade reads as follows

Xij = α0Y
α1
i Y α2

j Dα3
ij , (2.1)

where α0, α1, α2, and α3 are unknown parameters to be estimated. Eq. (2.1) states

that the trade flow from country i to country j, denoted by Xij, is proportional

to the product of the two countries’ GDPs, denoted by Yi and Yj, and is inversely

proportional to their distance, Dij, broadly constructed to include all factors that

might create trade resistance.

However, instead of Eq. (2.1) holding with certainty, we only expect it to hold
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in expectation. Thus, to account for such deviations from theory, we require the

relationship to hold in expectation

E[Xij|Yi, Yj, Dij] = α0Y
α1
i Y α2

j Dα3
ij . (2.2)

The authors of [2] argue that the traditional gravity equation is not correctly

specified, as it does not take into account the possibility of multilateral resistance.

That is, the benchmark gravity model above does not account for the potential

influence of, say, a third economy that trades with both country i and country j,

on the trading flow between i and j. As a solution, they suggest to augment Eq.

(2.2) with exporter and importer fixed effects, leading to

E[Xij|Yi, Yj, Dij] = α0Y
α1
i Y α2

j Dα3
ij e

θ11i+θ21j , (2.3)

where the new parameters θ1 and θ2 are to be estimated, and 1i and 1j are dummies

identifying the exporter and importer.

Similar to Newton’s gravity equation, we expect the signs of α1 and α2 to be

positive (i.e., the trade flow between two countries with large GDP’s is expected

to be higher). We also expect the sign of α3 to be negative, because the farther

apart two countries are, the lower the trade flow between them. The majority of

the gravity literature now follow this model specification albeit minor adjustments.

2.2 OLS

The multiplicative form of Eq. (2.3) is convenient. Indeed, there is a long

tradition in the trade literature of taking a log-linearization step and estimating
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the parameters of interest via least squares, using the equation

lnXij = lnα0 + α1 lnYi + α2 lnYj + α3 lnDij + θ11i + θ21j + εij, (2.4)

where εij are error terms satisfying E[εij|Yi, Yj, Dij] = 0.

Since the whole model is now linear, one can perform OLS to estimate the

parameters, i.e. by minimizing the objective function

∑
ij

[lnXij − (lnα0 + α1 lnYi + α2 lnYj + α3 lnDij + θ11i + θ21j)]
2 .

However, the OLS approach suffers from two problems. Firstly, although the

gravitational force in Newton’s gravity model can be very small, it is never zero.

This does not hold true for bilateral trade flows. For example, it should not come

as a surprise that two countries with small GDPs that are geographically far away

from each other did not trade in a certain year. The presence of zero trade flows

invalidates the log-linearization step.

The second problem is caused by the violation of the assumptions of OLS,

which requires the errors εij to be uncorrelated with the regressors. However,

the authors in [27] find overwhelming evidence that the error terms in the usual

log-linear specification of the gravity equation are heteroskedastic, which leads to

inconsistent estimates.

2.3 Generalized linear models

Before we delve into PPML, we provide a brief overview of the generalized

linear model (GLM) (see e.g. [23, 37]). The GLM generalizes linear regression
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by allowing the linear model to be related to the response variable via a link

function and by allowing the magnitude of the variance of each measurement to

be a function of its predicted value. More specifically, we model each outcome y

as to be generated from a particular distribution in the exponential family, which

includes the normal, binomial, Poisson and Gamma distributions. The mean, µ,

of the distribution of y depends on the independent variables, X, through the

following relation

E[y] = µ = g−1(Xβ),

where g is the link function.

In this framework, the variance is typically a function, V , of the mean

Var(y) = V (µ) = V (g−1(Xβ)). (2.5)

For the standard normal, V (µ) = 1, for the Bernoulli, V (µ) = µ(1 − µ), and

for the Poisson, V (µ) = µ.

The GLM literature realized early on that assumption (2.5) was too restrictive.

As discussed in [37], no variance assumption is needed for the consistent estimation

of β. Thus, the following relaxation of (2.5) is used

Var(y) = σ2
oV (g−1(Xβ)), (2.6)

where σ2
o > 0 is called the dispersion parameter. (2.6) is referred to as the GLM

variance assumption.
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2.4 PPML

To address the two issues associated with OLS, the authors in [27] propose to

model each trade flow Xij as a Poisson random variable with rate parameter λij

Xij ∼ Poisson(λij).

The motivation is to express Xij as a linear combination of the regressors,

followed by a transformation via the link function g−1(z) = exp(z). To see the

connection with Eq. (2.3), we group the country specific terms as

si = −(α1 lnYi + θ11i) and mj = −(α2 lnYj + θ21j).

We also define

φij = lnα0 + α3 lnDij.

Eq. (2.3) then becomes

E[Xij|si,mj, φij] = exp(φij − si −mj), (2.7)

which indicates if one sets the rate parameter λij = exp (φij − si −mj), the Poisson

distribution yields

E[Xij|si,mj, φij] = λij = exp (φij − si −mj) .

The variables si and mj are called the fixed effects because they are specific

to each importer and exporter countries. Also, they are relaxed to be unobserved
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and need to be estimated instead of being observed as in the original gravity equa-

tion (2.2). Additionally, φij is often specified as a linear combination of pairwise

measures of distance between the importer and exporter countries

φβij =
∑
k

βkd
k
ij,

where the superscript β indicates the dependence of β. Standard choices of dkij

include

1. geographical bilateral distance between i and j.

2. indicator of contiguous borders; of common official language; of colonial ties.

3. trade policy variables such as the presence of a regional trade agreement or

tariffs.

Therefore, the mean of Xij is now linear in the parameters βk, si, and mj. For

notational simplicity we will write

E[Xij|β] = exp(d>ijβ), (2.8)

where β combines all the βk, si, and mj, and dij without the superscript combines

all the measured regressors dkij and dummy variables associated with si and mj.

We now present estimation methods for Eq. (2.8).
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2.4.1 Estimation

The first naive model is non-linear least squares (NLS), which is defined via

β̂ = arg min
β

∑
ij

(X̂ij − exp(d>ijβ))2, (2.9)

which implies the following set of first-order conditions

∑
ij

(X̂ij − exp(d>ijβ̂)) exp(d>ijβ̂)dij = 0. (2.10)

We can see from Eq. (2.10) that this estimator gives more weight to observa-

tions where exp(d>ijβ̂) is large. If the model is specified as

Xij = exp(d>ijβ) + εij,

then essentially Eq. (2.9) assumes the variance of εij is constant, which is invalid

because the errors are heteroscedastic. The Poisson distribution requires

E[Xij|β] = Var(Xij|β),

which we call the Poisson variance assumption. A weaker assumption, which we

call the Poisson GLM variance assumption, is

E[Xij|β] = σ2
oVar(Xij|β).

This kind of model specification is particularly suitable for accounting for the

pattern of heteroskedasticity, since it tends to produce highly dispersed errors.
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Then the objective function becomes

∑
ij

(X̂ij − exp(d>ijβ̂))dij = 0,

which means we give equal weights to all the observations. Without further in-

formation on the pattern of heteroskedasticity, it seems natural to give the same

weight to all observations. It is shown in [37] that although the Poisson variance

assumption is weakened, the estimator obtained is still consistent. In the context of

the gravity model, while OLS tends to underweight smaller economies/observations

with smaller values, PPML allows us to treat all observations more equally. Since

the establishment of PPML as a more viable estimation method, PPML has been

widely employed in the gravity literature.

2.5 Connection with optimal transport

In this section we want to show the equivalence between the regularized Monge-

Kantorovich problem and PPML by showing they minimize the same objective

function. We start with Eq. (1.6)

W(A) = max
π∈Π(µ1,µ2)

Eπ [Φ (X, Y )− σ ln π (X, Y )] . (2.11)

In the trade context, the above can be re-written as

W(β) = max
Xij>0

{∑
ij

Xijφ
β
ij − σ

∑
ij

Xij lnXij

}

s.t.
∑
i

Xij = Yj and
∑
j

Xij = Xi,

(2.12)
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where Xi and Yj are the marginals representing the value of production and im-

porters’ expenditures, respectively. By duality, we can express W(β) as

W(β) = min
si,mj

{∑
i

siYi +
∑
j

mjXj + σ
∑
ij

exp

(
φβij − si −mj

σ

)}
. (2.13)

Without loss of generality, we can set σ = 1.

Eq. (1.12) becomes

min
si,mj

min
β

{
W(β)− EX̂ij

[φβij]
}
, (2.14)

with the nuclear norm regularization term omitted.

We show that this is exactly the same objective function as PPML is minimiz-

ing. In PPML we maximize the likelihood of the observations. Equivalently, this

is to choose optimal parameters so that the negative log-likelihood is minimized.

We recall the probability distribution of a Poisson random variable with rate pa-

rameter λ has the form fλ(z) = e−λλz/z!. Thus, we can write the negative log

likelihood of observing all the X̂ij’s as, up to a constant,

− lnL(X̂;β) = −
∑
ij

ln

e−λijλX̂ij

ij

X̂ij!


=
∑
ij

(
λij + X̂ij lnλij

)
=
∑
ij

exp
(
φβij − si −mj

)
−
∑
ij

X̂ij

(
φβij − si −mj

)
=
∑
ij

exp
(
φβij − si −mj

)
+
∑
i

siYi +
∑
j

mjXj −
∑
ij

X̂ijφ
β
ij,

which is exactly the objective function to be minimized in Eq. (2.14).
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2.6 Discussion

In this chapter, we have extended the optimal transport methods introduced in

the previous chapter to the estimation of the gravity equation in bilateral trades.

We note that our optimal transport approach does not make any distributional as-

sumptions of the trade flow, yet it coincides with the log-likelihood under a Poisson

GLM. Theoretically, this justifies the choice of using GLM with the exponential

link function in the estimation of the gravity equation. Computationally, this

bridges the gap between recent computational investigations of optimal transport

methods and the statistics literature.
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Chapter 3

Binary inverse problems

We consider the class of binary inverse problems, in which an observed signal is

formed as a superposition of a subset of template signals drawn from a dictionary,

and corrupted by additive noise. For example, the time-varying voltage measured

with an extracellular electrode may be described as a binary superposition of spike

waveforms. We assume a Bernoulli prior for the binary coefficients specifying the

subset, with known mean taking any value between zero and one (and thus not

necessarily sparse). The inference task of estimating the binary coefficients that

best explain the observed signal is an N -dimensional discrete optimization prob-

lem, with 2N possible solutions, and thus NP-hard. We formulate an approximate

MAP solution by (1) continuous relaxation of the problem, to a linear superpo-

sition of dictionary elements with continuous real-valued coefficients lying in the

unit interval; (2) inclusion of a concave binarization term in the objective func-

tion; and (3) development of a schedule for automatic incremental increases of

the multiplier on the concavity term, following a fixed sequence of values that lie

between the eigenvalues of the quadratic expansion of the objective. We show
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through simulations that this solution, which does not require selection of any

regularization or other parameters, achieves the MAP solution for low dimensions

(N 6 4), and for high dimensions outperforms standard methods developed for

sparse inverse problems, including simple thresholding, matching pursuit, LASSO,

and iteratively-reweighted L1.

3.1 Introduction

Decomposing an observed signal as a sum of elementary template signals is a

classic problem in statistical estimation, dating back more than 100 years. Recent

methods have focused on sparse versions of these problems, in which only a small

number of templates appear with non-zero coefficient amplitude in any given ob-

served signal. Despite the tremendous success of these methods, they often rely

on tuning parameters which can be difficult to choose in cases where there is no

ground truth data. In addition, their asymmetric construction may not be appro-

priate for applications in which coefficients are binary (but not necessarily sparse).

For example, in the neural spike sorting problem, one must decompose a time-

varying voltage measurement into a sum of spike waveforms, whose amplitude is

(approximately) constant.

Here, we develop a method for solving the binary inverse problem. Given a

signal formed from a sum of a subset of basis functions drawn from a known dic-

tionary of N such functions, and contaminated by additive Gaussian noise, we wish

to recover the binary N -vector indicating which functions are present. Searching

over the space of 2N possible discrete solutions is not feasible for large N , so we

construct a continuous relaxation of the problem, and gradually introduce a con-
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cave regularization term using a pre-specified schedule, so as to force the solution

toward a binary outcome. We show that this method achieves the statistically opti-

mal (MAP) solution for low dimensions (N 6 4), and outperforms several standard

sparse inverse methods, even for sparse cases (i.e., when the prior probability of

zero-valued coefficients is high).

3.2 Problem formulation

Consider the following generative model:

s = Db + n, (3.1)

where s ∈ RM is the observed signal, D is an M by N matrix consisting of the

basis functions (assumed to be known), and b is a binary coefficient vector in RN .

The noise vector, n, is assumed to be drawn from a standard normal N (0, σ2I).

If in addition, we assume a Bernoulli prior probability of the binary coefficients,

with a mean (sparsity) level p = 1
N
E[1>b], where 1 is an N -vector of ones, then

the posterior probability is

p(b|s) ∝ p(s|b)p(b)

=
1

(
√

2πσ)N
e−‖Db−s‖2/2σ2

p1
>b(1− p)1>(1−b).

Taking the negative log, multiplying by 2σ2, and discarding constant terms, we

can express the maximum a posteriori (MAP) estimator as the following optimiza-
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tion problem:

b̂MAP(s) = arg min
b

{
‖Db− s‖2 + 2σ2 log

(
1− p
p

)
1>b

}
s.t. b ∈ {0, 1}N .

(3.2)

3.2.1 Continuous relaxation and a concave term

The discrete optimization problem in (3.2) cannot generally be solved directly

as there are 2N possible solutions. Therefore, we relax the objective function into

a continuous form, replacing binary coefficients b with a real-valued coefficient

vector c, constrained to lie within the unit interval:

f(c) =

{
‖Dc− s‖2 + 2σ2 log

(
1− p
p

)
1>c

}
s.t. c ∈ [0, 1]N . (3.3)

In order to obtain binary solution from (3.3), we introduce a quadratic concave

term, controlled by a multiplier λ, into the objective function:

fλ(c) =

{
‖Dc− s‖2 + 2σ2 log

(
1− p
p

)
1>c− λ‖c− 1

2
1‖2

}
s.t. c ∈ [0, 1]N .

(3.4)

Unlike l1 regularization, which is used to encourage sparse solutions by pushing

coefficients toward zero [29, 7], this concave term is designed to push coefficients

toward either zero or one (i.e., toward the corners of the unit hypercube). When

λ = 0, we have the original objective function of Eq. (3.3). When λ > 0, the

objective function is a sum of convex and concave functions. And when λ is greater

than the largest eigenvalue of D>D, fλ(c) is fully concave, and the solution ĉ will

be binary due to the unit interval constraint c ∈ [0, 1]N .
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3.2.2 One dimensional case: an analysis

To see the effect of the concave term in fλ, we first consider the one-dimensional

problem. In this case, Eq. (3.1) becomes

s = bd + n,

where d is a vector consisting of only one basis function. Eq. (3.2) reduces to

b̂MAP(s) = arg min
b

{
b2 − 2bs̃+ 2σ2 log

(
1− p
p

)
b

}
s.t. b ∈ {0, 1},

where we assume that d is a unit vector (d>d = 1) and define s̃ = d>s, the

projection of the signal onto the vector basis function.

Computing the objective at the two possible solutions and setting them to be

equal give

s̃∗ = σ2 log

(
1− p
p

)
+ 0.5. (3.5)

Thus, the MAP estimator corresponds to applying a threshold to the measure-

ment s̃, at the location s̃∗ where these two functions cross, as illustrated in Fig.

3.1. In other words, b̂MAP = 1 when s̃ > s̃∗, and 0 otherwise.

We can show that the continuous objective function in Eq. (3.4) gives exactly

the same threshold rule, when the objective function is fully concave (i.e., when

λ > d>d = 1). In this case,

fλ(c) = ‖cd− s‖2 + 2σ2 log

(
1− p
p

)
c− λ(c− 1

2
)2

= (1− λ)c2 − (2s̃− 2σ2 log

(
1− p
p

)
− λ)c.
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Figure 3.1: Illustration of the one-dimensional binary inverse problem. Top left:
posterior distributions corresponding to the two options, b ∈ {0, 1}. Bottom left:
The MAP estimator is computed by applying a threshold function to the measured
value s̃, with a location specified by the point where the two distributions cross.
Right: Iterated concavity solution. Top plot indicates the objective function
fλ0(c) over the unit interval, for a particular (arbitrarily chosen) measurement s̃.
Red point indicates ĉ0(s̃), the minimum. Bottom plot shows the objective fλ1(c)
for a value of λ1 = 2, for which the function becomes concave. If one minimizes
this function using constrained gradient descent, starting from ĉ0(s̃) (red point),
the descent will terminate at ĉ1(s̃) = 1 (green point), which is equal to the MAP
solution.

That is, ĉλ(s̃) is the same threshold solution as the MAP estimator in Eq. (3.5).

Note that the threshold does not depend on λ, as long as λ > 1.

3.3 Iterative algorithm

The above analysis is only valid in the 1-dimensional case, and a threshold rule

generally does not give the MAP solutions in multiple dimensions. In this section

we propose an iterative algorithm for solving (3.2).

We denote the eigenvalues of D>D as e1 6 e2 6 · · · 6 eN and define a sequence

of λ’s to be λ0 = 0, λn = en (0 < n < N), and λN > eN . We start by solving

the constrained convex objective function fλ0(c) and denote the solution by ĉ0.

We then iterate, minimizing fλn+1(c) starting from ĉn for each n. Each objective
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function fλn(c) is the sum of a convex and a concave function, which we solve

iteratively with sequential convex programming. Specifically, we initialize ĉ
(0)
n =

ĉn−1. Then we iteratively perform a Taylor expansion around current estimate

ĉ
(k)
n :

fλn(c) = fλn(ĉ(k)
n )+

(
∇fλn(ĉ(k)

n )
)> (

c− ĉ(k)
n

)
+

1

2

(
c− ĉ(k)

n

)>∇2fλn(ĉ(k)
n )
(
c− ĉ(k)

n

)
.

Since 1
2
∇2fλn(ĉ

(k)
n ) = D>D−λnI is indefinite, we keep only its positive semidef-

inite part and solve the following convex optimization problem to get the next

iterate ĉ
(k+1)
n :

ĉ(k+1)
n = arg min

c∈[0,1]N

{(
∇fλn(ĉ(k)

n )
)>

c +
(
c− ĉ(k)

n

)> (
D>D− λnI

)
+

(
c− ĉ(k)

n

)}
.

(3.6)

This “majorization-minimization” approach has been referred to in various lit-

eratures as the concave-convex procedure, the difference of convex functions algo-

rithm, and multi-stage convex relaxations. For convergence results, see e.g. [21, 1].

Once the sequence {ĉ(k)
n }k=0,1,··· converges, we obtain an approximation to the

minimizer of fλn and denote it as ĉn. We then minimize fλn+1 starting at ĉn.

We repeat the procedure until we reach fλN , which is fully concave, and the final

solution ĉN obtained by our algorithm will always be binary.
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3.3.1 One dimensional case, revisited

We analyze the iterative algorithm in one dimension. When λ0 = 0, we are

solving the regular constrained least squares problem

arg min
c∈[0,1]

{
‖cd− s‖2 + 2σ2 log

(
1− p
p

)
c

}
= arg min

c∈[0,1]

{
c2 + (2σ2 log

(
1− p
p

)
− 2s̃)c

}
.

If s̃− σ2 log
(

1−p
p

)
∈ [0, 1], the solution is ĉ0 = s̃− σ2 log

(
1−p
p

)
.

We then minimize fλ1(c) where λ1 > 1 using Eq. (3.6). Since the objective

is fully concave, the quadratic term disappears and the minimization problem

becomes

ĉ
(1)
1 = arg min

c∈[0,1]
{∇fλ1(ĉ0)c} . (3.7)

Since

∇fλ1(ĉ0) = 2ĉ0 + 2σ2 log

(
1− p
p

)
− 2s̃− 2λ1(ĉ0 −

1

2
)

= −2λ1(ĉ0 −
1

2
)

and (3.7) is a linear program with box constraints, we know if ĉ0 > 1
2

we will

arrive at ĉ
(1)
1 = 1 and vice versa. Therefore, ĉ

(1)
1 is obtained by thresholding s̃ at

0.5 + σ2 log
(

1−p
p

)
, identical to the MAP solution of Eq. (3.5).

We now consider the next iterate

ĉ
(2)
1 = arg min

c∈[0,1]

{
∇fλ1(ĉ

(1)
1 )c

}
,
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where

∇fλ1(ĉ
(1)
1 ) = 2ĉ

(1)
1 + 2σ2 log

(
1− p
p

)
− 2s̃− 2λ1(ĉ

(1)
1 −

1

2
)

= 2(1− λ1)ĉ
(1)
1 + 2σ2 log

(
1− p
p

)
− 2s̃+ λ1.

We recall ĉ
(1)
1 ∈ {0, 1}. If ĉ

(1)
1 = 1, we know s̃− σ2 log

(
1−p
p

)
= ĉ0 >

1
2
, so

∇fλ1(ĉ
(1)
1 ) < 2(1− λ1)ĉ

(1)
1 − (1− λ1) = 1− λ1 < 0.

Thus, we again have ĉ
(2)
1 = 1, and by induction all the subsequent iterates ĉ

(k)
1

will remain at 1. A similar analysis can be carried out for cases where ĉ
(1)
1 = 0 and

s̃−σ2 log
(

1−p
p

)
< 0 or s̃−σ2 log

(
1−p
p

)
> 1. Thus, in one dimension, our iterative

algorithm gives exactly the same solution as the MAP solution of Eq. (3.5).

3.4 Two-dimensional case

In the previous section we proved that by sequentially minimizing the convex

objective function fλ0(c), and then the fully concave function fλ1(c), one arrives at

the true MAP solution. The second step corresponds to applying a threshold to the

solution from the first step, ĉ0(s). In two dimensions, when the dictionary elements

do not overlap (i.e., when they have disjoint supports), the matrix D>D will be

diagonal, and the objective function can be expressed as a sum of N independent

scalar functions, each operating on a component of c. Thus, the two-dimensional

problem can be essentially treated as two independent one-dimensional problems.

In this separable case, the MAP solution corresponds to applying the same thresh-

olding rule to each component independently, and the two-step algorithm from the
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previous section will again achieve the MAP solution.

However, when the two dictionary elements are correlated, with inner product

ρ, the MAP decision boundaries become non-separable, as shown in the upper

right panel of Fig. 3.2, for a prior (sparsity level) of p = 0.5. Specifically, we see

that a boundary segment connecting the black and white regions, oriented at 45

degrees, is formed. The bottom right panel shows the MAP decision boundaries

for p = 0.45, which are identical in shape, but shifted in the (1, 1) direction.

Under these conditions, the two-step (thresholding) procedure (solving fλ0 and

then fλN ) results in non-separable decision boundaries that differ from the MAP

solution (Fig. 3.2, upper middle panel). But we find that the full iterative concav-

ity procedure (solving fλ0 , fλ1 , and fλ2) does achieve the MAP solution (Fig. 3.2,

upper right panel). This also holds for different values of noise level, σ, and prior,

p (Fig. 3.2, lower right panel). Moreover, we have verified through numerical sim-

ulation that the iterative procedure attains the true MAP solution for correlated

dictionaries in three and four dimensions, whereas the two-step thresholding pro-

cedure, is suboptimal, producing errors near the non-horizontal and non-vertical

segments of the MAP decision boundaries. This result cannot be generalized to

the high-dimensional case, since the MAP solution cannot be computed. Instead,

in the next section, we compare performance on high-dimensional simulated data

with several widely used methods for sparse inverse problems.

3.5 High-dimensional simulations

In this section we compare our approach against four methods for solving bi-

nary inverse problems: simple thresholding, matching pursuit (a greedy method),
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Figure 3.2: Illustrations of the two-dimensional binary inverse problem. Axes of all
plots correspond to the components of D>s. Top Left: Posterior distribution for
prior p = 0.5. Elliptical level curves of the Gaussian distributions corresponding
to the four choices of b, indicated by the four red points. Top Middle: The
decision boundaries obtained by the two-step (thresholding) solution, solving fλ0
and then fλ2 . Top Right: The decision boundaries attained by the iterative
concavity algorithm (i.e., by sequentially solving fλ0 , fλ1 and then fλ2), which
are identical to the true MAP solution. Bottom: The same contour and MAP
decision boundary plot, for a prior value p = 0.45. This solution is also attained
by the iterative algorithm.
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LASSO (l1 regularization), and iteratively reweighed l1 (IRL1). We performed tests

on translational dictionaries containing two types of basis function, a univariate

Gaussian, g1(x) ∝ exp(−x2), and the derivative of a Gaussian, g2(x) ∝ x exp(−x2).

We consider two different prior values: p = 0.5 (non-sparse) and p = 0.2 (sparse).

We examine performance under different noise levels (indicated by signal-to-noise

ratio, SNR = 1/σ), as well as different spacing between basis functions, δ, ex-

pressed in units of the standard deviation used for g1 and g2. We chose N = 32 for

all simulations described in this section. For these simulations, we find that the

running time of our Iterative Concavity implementation is comparable to that of

IRL1.

The greedy method (e.g. [22, 32]) starts with an all-zero solution vector, and

iteratively flips one bit, chosen so as to most reduce the likelihood function (mean

squared error). This procedure is repeated until the improvement in the mean

squared error is sufficiently small.

The LASSO [29] solves an l1-regularized version of the original objective func-

tion:

ĉLASSO = arg min
c∈[0,1]N

{
‖Dc− s‖2 + λ‖c‖1

}
. (3.8)

Inclusion of the l1 penalty encourages sparsity (in particular, it favors zero

coefficients), while still retaining convexity.

The IRL1 method [6] uses a concave-convex procedure to solve the following

optimization problem:

ĉIRL1 = arg min
c∈[0,1]N

{
‖Dc− s‖2 +

N∑
i=1

log(ε+ |ci|)

}
.

It takes the LASSO solution as an initialization, i.e. ĉ
(0)
IRL1 = ĉLASSO. At
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each step k, a diagonal weight matrix W(k) is constructed with diag(W(k)) =

1/(ε+ ĉ
(k)
IRL1), and the next iterate ĉ

(k+1)
IRL1 is obtained via the following optimization

problem

ĉ
(k+1)
IRL1 = arg min

c∈[0,1]N

{
‖Dc− s‖2 + λ‖W(k)c‖1

}
. (3.9)

For LASSO and IRL1, both the regularization parameter λ, and a threshold T

to force the final solutions to be binary, need to be selected. In our simulations, we

test values λ ∈ {0, 10−3, 3 · 10−3, 0.01, , · · · , 1, 3} and T ∈ {10−4, 3 · 10−4, 10−3, 3 ·

10−3, 0.01, 0.03, 0.1, 0.3, 0.5, 0.7, 0.9}.

3.5.1 Non-sparse case

With Bernoulli prior p = 0.5, we observe that both LASSO and IRL1 (which

are designed for sparse problems) achieve their best performance at λ = 0, T = 0.5,

which is essentially the same as solving fλ0(c) to obtain ĉ0 and thresholding all

components at 0.5. Therefore, for this case, we compare the iterative concavity

algorithm against the greedy method and the thresholding solution, for a wide

range of SNR and spacing values. The results are shown in Fig. 3.3. We compute

the total error as the average of the sum of false alarms (identifying 0 as 1) and

misses (identifying 1 and 0), averaged over 1000 randomly drawn examples.

We see that for both types of basis function, the greedy method performs

poorly. When SNR is high and the separation between basis functions is large

(i.e. the lower left region in the plots of Fig. 3.3), the greedy method performs

as well as the other two. However, once the separation becomes sufficiently small,

the performance of the greedy method drops rapidly. On the other hand, both

the thresholding and our solutions are relatively robust to noise and basis function
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Figure 3.3: Performance comparison of the Iterative Concavity, Thresholding, and
Greedy algorithms, as a function of noise level (SNR) and spacing (δ). Average
performance, measured as the sum of misses and false alarms, was estimated by
averaging over 1000 simulated trials. Level curves for each method are shown
at 10% of the maximum error. Left: Dictionary of 32 Gaussian basis function.
Right: Dictionary of 32 Gaussian derivative basis functions.

correlation, with ours outperforming thresholding at all spacing values.

3.5.2 Sparse case

We compared all five methods for a sparse Bernoulli prior of p = 0.2. The

panels of Fig. 3.4 show the average number of misses and false alarms for all five

methods, averaged over 1000 randomly drawn examples, for different combinations

of SNR and spacing (δ), and for both the Gaussian and Gaussian derivative basis

functions. The convex hulls for the LASSO and IRL1 solution points, obtained for

a set of different tuning parameters (λ, T ) are shown. For all (SNR, δ) pairs, the

Iterative Concavity method always achieves the same or slightly better performance

than the best achievable by LASSO and IRL1 (i.e., with the right values of λ and

T ), and is significantly better than the greedy and the thresholding solutions.
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Figure 3.4: Comparison of the Iterative Concavity, LASSO, IRL1, Threshold, and
Greedy algorithms. Each panel shows misses and false alarms in recovering a
32-dimensional binary coefficient vector, averaged over 1000 randomly drawn ex-
amples, for the indicated type of basis function, SNR and spacing (δ). The multiple
points shown for LASSO and IRL1 correspond to different choices of their tuning
parameters, (λ, T ), and the green line indicates the convex hull of these points.
The red line indicates the total errors (false alarms plus misses) for the Iterative
Concavity solution.
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Table 3.1: Optimal (λ, T ) for LASSO and IRL1.

Parameters Optimal (λ, threshold)

Basis Function Type (SNR, δ) LASSO IRL1

Gaussian (2, 2) (0.3, 0.5) (0.1, 0.7)
Gaussian (2, 1) (0.1, 0.7) (0, 0.9)
Gaussian (1, 2) (1, 0.9) (1, 0.9)
Gaussian Derivative (2, 4) (0, 0.9) (0, 0.9)
Gaussian Derivative (2, 2) (0.3, 0.5) (0.1, 0.7)
Gaussian Derivative (1, 4) (1, 0.9) (1, 0.9)

Table 3.1 indicates the (λ, T ) pair that achieves the lowest error in each of the

plots shown in Fig. 3.4. We see that the optimal combination for both LASSO and

IRL1 vary significantly, and the threshold values are often quite large (e.g., 0.7-

0.9). This is a significant disadvantage, since in applications such as spike sorting

where no ground truth is available, it is not obvious how to select them.

3.6 Image dithering

In this section we apply out iterative concavity procedure to the task of image

dithering. Given an original gray-scale image Iorig as a 2D matrix of pixel values

between 0 and 1, we want to find a binarized image Ib, whose pixel values can only

be either 0 or 1, such that a pre-specified perceptual metric, ‖ · ‖perc, is minimized.

Mathematically, the problem can be formulated as

min
Ib
‖Ib − Iorig‖perc. (3.10)

One most commonly used metric is the Mean Squared Error (MSE), which

will simply yield the pixel-wise thresholded solution. Although there are standard
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perceptual models developed in the human vision literature (see e.g. [35]), we will

focus on the performance of our optimization procedure and adopt the weighted

Fourier metric. More specifically, we let F denote the Fourier transform. We also

denote Forig = FIorig and Fb = FIb as the transformed images in the Fourier

domain. The weighted Fourier metric is then defined as

‖Ib − Iorig‖perc = (vec(Fb − Forig))∗W(vec(Fb − Forig)), (3.11)

where W is a diagonal matrix with weights on the diagonal.

Following the approach developed in previous sections, we perform a continuous

relaxation and introduce a concave term into the objective function, so Eq. (3.10)

becomes

min
Ic

{
‖Ic − Iorig‖perc − λ‖Ic −

1

2
11>‖2

}
, (3.12)

where the pixel values of Ic are allowed to lie within the interval [0, 1]. We note

that the eigenvalues of the Hessian of ‖Ic−Iorig‖perc are simply the diagonal entries

of W, so we can set our λ’s to be such. We now compare the performance of our

approach against the standard Floyd-Steinberg dithering procedure, as well as a

greedy approach where one goes through the image from left to right, and then

from top to bottom, each time greedily binarizing one pixel by minimizing the

perceptual metric defined in (3.11). We apply these methods to an image of size

512 by 512. The weights in W of Eq. 3.11 are set by scaling |f |0.25 such that the

largest value is 1 and rounding to the nearest tenth. The results are presented in

Fig. 3.5.

Comparing the bottom row against the output of the Floyd-Steinberg algorithm

(the top right figure), we see both have sharper contrast. Indeed, this shows the
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Figure 3.5: Comparison of the Iterative Concavity, Floyd-Steinberg, and Greedy
algorithms. Top Left: The original gray-scale image. Top Right: The output of
Floyd-Steinberg dithering, with a perceptual difference of 11007. Bottom Left:
The output of Iterative Concavity, with a perceptual difference of 9977. Bottom
Right: The output of Greedy, with a perceptual difference of 10599.
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weighted Fourier metric is perceptually superior to MSE. The Floyd-Steinberg has

a perceptual error of 11007, which is about 5 % higher than that achieved by the

Greedy method, and is about 10 % higher than our Iterative Concavity method.

The bottom row shows the output of our Iterative Concavity method (bot-

tom left) and the Greedy method (bottom right). Although both figures display

significantly higher contrast when compared with the original image and the Floyd-

Steinberg output, the output of our Iterative Concavity method retains much more

detail. For instance, the details of the mesh next to the models right cheek can still

be clearly seen, while in the right figure they melt into a block of dark pixels; the

wisp of hair in front of the models left eye, visibly captured by our algorithm, is also

lost by the Greedy algorithm. In addition, the color on the models face varies with

more consistency in the left figure, whereas in the right figure the transitioning

between different facial areas seems more rigid, especially around the nose.

3.7 Discussion

We have presented an Iterative Concavity algorithm for solving binary inverse

problems, assuming a Bernoulli (but not necessarily sparse) coefficient prior. We

show analytically in one dimension and numerically in two dimensions, that our

method yields the optimal MAP decision boundaries. We also examined perfor-

mance on simulated high-dimensional examples, comparing to a variety of sparse

inverse methods. We find that Iterative Concavity substantially outperforms sim-

ple thresholding and greedy methods, and achieves or exceeds the best-case per-

formance of LASSO and IRL1, taken over all possible values of their tuning pa-

rameters. This holds for different choices of SNR and basis function spacing, even
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when the Bernoulli prior is low (i.e., sparse cases). Given that there is no gener-

ally agreed-upon method of selecting these parameters for problems lacking ground

truth data, these results imply a significant advantage of our method.

We believe this approach can be generalized in a number of ways. The noise

model should be generalizable to any additive noise with a log-convex distribu-

tion. We’ve only shown examples with convolutional dictionaries (i.e., formed from

shifted copies of a single basis function), but the problem and solution formulation

do not rely on this, and should apply equally well to more general dictionaries.

Finally, if the basis functions are unknown, one could adopt a coordinate descent

algorithm, such as in [24, 13], to iteratively alternate between optimizing the basis

functions and the associated binary coefficients.
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